Electron Transport through Double Quantum Dot System with Inter-Dot Coulomb Interaction
نویسنده
چکیده
A theoretical approach to a problem of electron transport through double quantum dot systems based on non-equilibrium Green function formalism using equation of motion method is presented. I−V characteristics and differential conductance are calculated and discussed in detail in the intermediate regime with tunneling rate between the quantum dots comparable to coupling constants with external electrodes. Effects of inter-dot Coulomb correlations are studied for various values of interaction parameter U . It is shown that the interaction influences transport properties in a pronounced way and apart from the simple Coulomb blockade additional effects can be obtained. When energy levels of two quantum dots are not aligned, the asymmetry in conductance characteristics is closely related to a voltage dependence of population numbers in both quantum dots. For a one bias polarization electrons are well localized in quantum dots in a low voltage region, whereas for the opposite one they are partly delocalized.
منابع مشابه
Effect of asymmetric quantum dot rings in electron transport through a quantum wire
The electronic conductance at zero temperature through a quantum wire with side-connected asymmetric quantum ring (as a scatter system) is theoretically studied using the non-interacting Hamiltonian Anderson tunneling method. In this paper we concentrate on the configuration of the quantum dot rings. We show that the asymmetric structure of QD-scatter system strongly influences the amplitude an...
متن کاملEffect of asymmetric quantum dot rings in electron transport through a quantum wire
The electronic conductance at zero temperature through a quantum wire with side-connected asymmetric quantum ring (as a scatter system) is theoretically studied using the non-interacting Hamiltonian Anderson tunneling method. In this paper we concentrate on the configuration of the quantum dot rings. We show that the asymmetric structure of QD-scatter system strongly influences the amplitude an...
متن کاملElectron Transport through Double Quantum Dots with Interdot Coulomb Repulsion
Electron transport through a system of two quantum dots connected in series is studied theoretically with the use of non-equilibrium Green function formalism based on the equation of motion method. Each dot is described by the one-level Anderson Hamiltonian and interdot Coulomb interactions in the form of the Hubbard-like term are taken into account. The electric current and occupation numbers ...
متن کاملElectron Transport through Double Quantum Dot: from SU(4) Kondo to SU(2) Symmetry
Electron transport across two capacitively coupled quantum dots in a parallel geometry is theoretically studied in the non-linear response regime with spin and orbital degrees of freedom taken into account and the Kondo effect induced by on-site and inter-dot Coulomb correlations is analyzed. For a system with each dot symmetrically coupled to a separate set of electrodes a well-defined spin an...
متن کاملConductance suppression due to correlated electron transport in coupled double quantum dots
The electrostatic interaction between two capacitively coupled metal double-dots is studied at low temperatures. Experiments show that when the Coulomb blockade is lifted by applying appropriate gate biases to both double-dots, the conductance through each double-dot becomes significantly lower than when only one doubledot is conducting. A master equation is derived for the system and the resul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007